Page 1 sur 1

Vecteurs et rectangle (1re spé maths)

Publié : 16 février 2022, 21:15
par PiRate314
Bonjour,
Élève de première générale, je reste bloqué sur un exercice vu en spécialité maths.

Cela concerne le chapitre lié aux vecteurs:


Soit ABCD un rectangle, avec AB = a et BC = b. Soit O le centre du rectangle et M un point du plan:

Montrer que MA^2 + MB^2 + MC^2 + MD^2 = 4OM^2 + a^2 + b^2


Cela paraît pourtant simple mais je n’arrive pas à trouver de lien entre les deux expressions.

Merci d’avance pour votre aide !

Re: Vecteurs et rectangle (1re spé maths)

Publié : 17 février 2022, 14:33
par Job
Bonjour

$\overrightarrow {MA}^2 =(\overrightarrow{M0} +\overrightarrow{OA})^2 = \overrightarrow{MO}^2 +\overrightarrow{OA}^2 +2\overrightarrow{MO}\cdot \overrightarrow{OA}$

On écrit la même relation avec $\overrightarrow{MB}^2 , \overrightarrow{MC}^2 $ et $\overrightarrow{MD}^2$

On a alors :
$MA^2+MB^2 +MC^2 +MD^2=4MO^2 +OA^2+OB^2+OC^2 +OD^2 +2\overrightarrow{MO}\cdot (
\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC} +\overrightarrow{OD})$

$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC} +\overrightarrow{OD})=\overrightarrow{0}$

$OA^2+OB^2+OC^2+OD^2=4OA^2 = 4 (\frac{AC}{2})^2=AC^2=AB^2+BD^2 =a^2+b^2$