Nombre d'or

Aide au niveau terminale et sujets de baccalauréat.
Jon83
Membre
Messages : 308
Inscription : 26 novembre 2013, 16:08

Nombre d'or

Message par Jon83 » 04 novembre 2019, 21:41

Bonsoir à tous!
Je bute sur l'énoncé suivant:
Le nombre d'or, noté phi est la solution positive de l'équation x²-x-1=0.
Déterminer la valeur exacte de phi^21.

J'ai bien pensé à la suite de Fibonacci, mais on n'en parle pas ici ???

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2031
Inscription : 28 juin 2013, 15:07
Contact :

Re: Nombre d'or

Message par Job » 05 novembre 2019, 16:40

Bonjour

Il est difficile d'éviter une suite de Fibonacci.

Comme $\phi$ est solution de l'équation $x^2-x-1=0$ on a $ \phi^2 =\phi +1$

$\forall n \in {\mathbb N}^*,\ \phi^n+\phi^{n+1}=\phi^n(1+\phi)=\phi^n\times \phi^2=\phi^{n+2}$

De proche en proche, on obtient toutes les puissances de $\phi$.
Un petit programme permet alors de calculer $\phi^{21}$

Jon83
Membre
Messages : 308
Inscription : 26 novembre 2013, 16:08

Re: Nombre d'or

Message par Jon83 » 05 novembre 2019, 18:51

Merci pour ton aide!
Cordialement, Mikel

Répondre