scalaire

Aide au niveau première.
nico033
Membre
Messages : 508
Inscription : 18 janvier 2014, 16:43

scalaire

Message par nico033 » 21 mai 2015, 10:35

Bonjour ,
J'ai quelques exercices à faire pour la semaine prochaine , et je n'arrive pas à les traiter, pourriez vous m'aider svp, merci par avance...

Rectangle ABCD a pour coté AB = 15 et AD = 8
Calculer AB.BD
B et D se projettent respectivement en B' et D' sur (AC) . Déduire de la question précédente la longueur B'D'

nico033
Membre
Messages : 508
Inscription : 18 janvier 2014, 16:43

Re: scalaire

Message par nico033 » 22 mai 2015, 13:09

Bonjour;

Pourriez vous m'aider sur mon exercice .
Merci par avance

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2585
Inscription : 28 juin 2013, 15:07
Contact :

Re: scalaire

Message par Job » 22 mai 2015, 16:02

Bonjour

1) On considère le projeté de $\overrightarrow{BD}$ sur $\overrightarrow{AB}$
$\overrightarrow{AB}\cdot \overrightarrow{BD}=\overrightarrow{AB}\cdot \overrightarrow{BA}=-\overrightarrow{AB}^2=-225$

2) $\overrightarrow{B'D'}$ est le projeté de $\overrightarrow{BD}$ sur $\overrightarrow{AC}$ donc
$\overrightarrow{AC}\cdot \overrightarrow{B'D'}=\overrightarrow{AC}\cdot\overrightarrow{BD}=(\overrightarrow{AB}+\overrightarrow{BC})\cdot\overrightarrow{BD}=\overrightarrow{AB}\cdot\overrightarrow{BD}+\overrightarrow{BC}\cdot\overrightarrow{BD}=\overrightarrow{AB}\cdot\overrightarrow{BD}+\overrightarrow{BC}^2=-225+64=-161$

Par le théorème de Pythagore : $AC=\sqrt{15^2+8^2}=\sqrt{289} =17$
Les vecteurs $\overrightarrow{AC}$ et $\overrightarrow{BD}$ sont de sens contraire donc
$\overrightarrow{AC}\cdot \overrightarrow{B'D'}=-AC\times B'D'=-17B'D'$ donc $B'D'=\frac{-161}{-17}=\frac{161}{17}$

Répondre