Combinaison 2 pas urgent

Aide sur les questions de probabilités.
Marc32
Membre
Messages : 81
Inscription : 17 septembre 2013, 05:31

Combinaison 2 pas urgent

Message par Marc32 » 27 novembre 2022, 16:04

Salut Job, quand tu pourra, serait-il posssible de corrigé cet exercice si possible? c'est pas urgent t'inquiète
https://ibb.co/6gdTGrv

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2524
Inscription : 28 juin 2013, 15:07
Contact :

Re: Combinaison 2 pas urgent

Message par Job » 28 novembre 2022, 17:01

Salut Marc

Il faut essayer de réduire au même dénominateur

$\displaystyle \binom {n}{k}+\binom {n}{{k+1}}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k+1)!(n-k-1)!}$

On multiplie les 2 termes de la première fraction par $(k+1)$et ceux de la seconde fraction par $(n-k)$, ce qui donne :

$\displaystyle \frac{n!(k+1)}{(k+1)!(n-k)!}+\frac{n!(n-k)}{(k+1)!(n-k)!}$

Soit $\displaystyle \frac{n!(k+1+n-k)}{(k+1)!(n-k)!}=\frac{(n+1)!}{(k+1)!(n-k)!}=\binom{n+1}{k+1}$

Répondre