Nombres Complexes

Aide sur les questions d'algèbres et géométries.
Thamirah
Membre
Messages : 12
Inscription : 17 avril 2017, 13:29

Nombres Complexes

Message par Thamirah » 05 octobre 2023, 18:08

Bonjour,
Pouvez-vous m’aider pour cet exercice s’il vous plaît.
Merci

On considère les nombres complexes j = cos (2pi/3) + isin (5pi/3) et u = 1+j.

1.1- Démontrer que j^3=1 et que 1 + j + j^2=0
1.2- Calculer u^k, pour tout k appartenant à {0,1,2, 3, 4,5,6}, en fonction de 1, de -1, de j et de -j.
1.3- Démontrer que la famille (1, j) est une base du R-espace vectoriel C.

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2587
Inscription : 28 juin 2013, 15:07
Contact :

Re: Nombres Complexes

Message par Job » 09 octobre 2023, 11:21

Bonjour Thamirah

N'y a-t-il pas une erreur dans le texte ?

Habituellement, $j$ est le complexe $\cos (\frac{2\pi}{3}) +i \sin (\frac{2\pi}{3})$ et non $\frac{5\pi}{3}$

Thamirah
Membre
Messages : 12
Inscription : 17 avril 2017, 13:29

Re: Nombres Complexes

Message par Thamirah » 09 octobre 2023, 19:33

Oui c’est plutôt cos(2pi/3)+isin(2pi/3)

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2587
Inscription : 28 juin 2013, 15:07
Contact :

Re: Nombres Complexes

Message par Job » 10 octobre 2023, 15:53

Le plus simple est d'utiliser la forme exponentielle de $j$

$j=e^{i.\frac{2\pi}{3}}$

$j^3=e^{i2\pi}=1$

$1+j+j^2$ est la somme de termes consécutifs d'une suite géométrique donc :
$1+j+j^2=\frac{1-j^3}{1-j}=0$

Avec la forme exponentielle, vous devez arriver à faire la suite.

Répondre