Intégrale généralisée

Aide sur les questions d'analyses.
Marc32
Membre
Messages : 122
Inscription : 17 septembre 2013, 05:31

Intégrale généralisée

Message par Marc32 » 11 avril 2023, 17:35

Boujour Job j'envoi ce message pour savoir si tu pourrai corrigé cet exercice stp?

https://ibb.co/cLzfzmL

Il y a un rappel de cours page 9-10 mais c'est des cours de licence maths, donc je ne connais pas trop

voici le résumé de cours :

https://zupimages.net/viewer.php?id=23/15/4mzu.png

https://zupimages.net/viewer.php?id=23/15/iko7.png

J'espère que tu as passé de bonne vacance de pâques sinon

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2587
Inscription : 28 juin 2013, 15:07
Contact :

Re: Intégrale généralisée

Message par Job » 12 avril 2023, 15:34

Bonjour Marc

Le cours, je le trouve dans mes bouquins, ce qui m'intéresserait serait de voir les exercices que tu as dû faire avec ton professeur car je ne sais pas trop ce que je peux faire et je suis un peu rouillée.

Pour le 1 ce que je te propose :
Soit 2 réels $a$ et $b$ avec $0<a<b$
Avec une intégration par parties :
$I=\displaystyle \int_a^b \ln x dx = [x \ln (x)]_a^b-\int_a^b x\cdot \frac{1}{x} dx$
$=b\ln (b) -a\ln (a)-(b-a)$

Avec $b=1$ pn a : $\displaystyle \int_a^1 \ln (x)dx = -a \ln (a)-1+a$ qui a pour limite -1 quand $a$ tend vers 0.

Quand $b$ tend vers +l'infini, $ b(\ln b-1)$ tend vers +l'infini donc
l'intégrale tend vers + l'infini.

Donc $\displaystyle \int _0^1 \ln x dx $ converge tandis que l'intégrale $\displaystyle \int_1^{+\infty}$ diverge.

Et par conséquent $\displaystyle \int_0^{+\infty} \ln x dx$ diverge.

Est-ce genre d'exercice que tu as vu ?

Marc32
Membre
Messages : 122
Inscription : 17 septembre 2013, 05:31

Re: Intégrale généralisée

Message par Marc32 » 13 avril 2023, 19:48

Hello Job, je te remerci pour ton aide, effectivement le cours ne te sert a rien.
Je t'envoi une partie du corrigé(je dois recopier le reste) ça ressemble à ce que tu as fais (sauf erreur de ma part, erreur de recopiage).
https://zupimages.net/viewer.php?id=23/15/es6o.jpeg

Répondre