integrale

Aide sur les questions d'analyses.
nico033
Membre
Messages : 492
Inscription : 18 janvier 2014, 16:43

integrale

Message par nico033 » 04 juin 2021, 21:12

Bonsoir Job,

Pouvez vous me dire ce qu'il fallait faire à ces trois exercices ci joint, que je viens de faire ce jour :

Trouver la solution générale de l'équation: z' = exp (x) * z + x exp (exp(x))

Décomposer la fraction rationnelle suivante: (1) / (x-1)^2(x^2+4)

Calculer l'integrale entre 0 et 1: exp(rac (t)) dt

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2311
Inscription : 28 juin 2013, 15:07
Contact :

Re: integrale

Message par Job » 08 juin 2021, 16:23

Bonjour nico

$\displaystyle I=\int_0^1 e^{\sqrt t}dt$

On fait un changement de variable avec $x=\sqrt t$ donc $dx=\frac{1}{2\sqrt t} dt =\frac{1}{2x} dt$ soit $dt=2x dx$

$\displaystyle I=2\int_0^1 xe^x dx$

On fait une intégration par parties :

$\displaystyle I=2\left( [xe^x]_0^1-\int_0^1 e^xdx\right) = 2[xe^x-e^x]_0^1=2$

Répondre