Géométrie dans l’espace et raisonnement par récurrence

Aide au niveau terminale et sujets de baccalauréat.
Madix
Membre
Messages : 3
Inscription : 11 septembre 2022, 19:32

Géométrie dans l’espace et raisonnement par récurrence

Message par Madix » 21 septembre 2022, 23:48

Ex1 on considère trois vecteurs i, j et k qui forment une base de l’espace on pose: u=i-j+k. v=2i+k. w= 3i-j

1) montrer que les vecteur u et v ne sont pas colinéaires
2) peut-on trouver de réels a et b tel que w= au + bv
3) que peut-on en déduire pour les vecteurs u v et w

Ex2 une suite Un est définie par : u0=1 Un+1= 1/3Un + n-2 pour tout n>ou=0

Démontrer par récurrence que pour n>ou=0
Un= 25/4 x 1/3^n + 3n/2 - 21/4

Très urgent car c’est mon dm pour ajd

Avatar de l’utilisateur
Job
Propriétaire du forum
Messages : 2483
Inscription : 28 juin 2013, 15:07
Contact :

Re: Géométrie dans l’espace et raisonnement par récurrence

Message par Job » 22 septembre 2022, 10:42

Bonjour

Exercice 1

1) u et v sont colinéaires si il existe un réel tel que v=a u soit
2i + k = a(i-j+k)=ai -aj +ak
On devrait donc avoir $\left\{\begin {array}{ccc}a&=&2\\-a&=&0\\a&=&1\end{array}\right.$
Les égalités sont incompatibles donc u et v ne sont pas colinéaires.

2) au+bv =a(i-j+k) +b(2i+k)=(a+2b)i-aj +(a+b)k
On doit donc avoir : $\left\{\begin{array}{ccc}a+2b&=&3\\-a&=&-1\\a+b&=&0\end{array}\right.$
Le système n'a pas de solution

3) w n'est pas une combinaison linéaire de u et v.
Les 3 vecteurs u, v, w constituent une base de l'espace.

Répondre