nature d'une série

Aide sur les questions d'analyses.
mt2sr
Membre
Messages : 39
Inscription : 09 septembre 2013, 23:01

nature d'une série

Message par mt2sr » 21 décembre 2020, 11:00

bonjour
une idée pour étudier
$ \sum \limits_{n\geq 2} \frac{1}{n^{1+\frac{1}{\sqrt{\ln n}}}} $
Dernière modification par mt2sr le 21 décembre 2020, 11:07, modifié 1 fois.

mt2sr
Membre
Messages : 39
Inscription : 09 septembre 2013, 23:01

Re: nature d'une série

Message par mt2sr » 21 décembre 2020, 11:02

série.png
série.png (9.03 Kio) Consulté 4637 fois

JPB
Membre
Messages : 23
Inscription : 30 juin 2013, 12:18

Re: nature d'une série

Message par JPB » 21 décembre 2020, 20:08

$\dfrac{(\ln n)^2}{n^{1/\sqrt{\ln n}}}=\exp\bigl(2\ln(\ln n)-\sqrt{\ln n}\bigr)\to0$ par croissances comparées.

On en déduit que $\dfrac1{n^{1/\sqrt{\ln n}}}=o\Bigl(\dfrac1{(\ln n)^2}\Bigr)$ et donc que $u_n=o\Bigl(\dfrac1{n(\ln n)^2}\Bigr)$.

Or la série $\displaystyle\sum\dfrac1{n(\ln n)^2}$ converge (c'est une série de Bertrand, cela se montre par comparaison à une intégrale) donc la série $\displaystyle\sum u_n$ converge.

mt2sr
Membre
Messages : 39
Inscription : 09 septembre 2013, 23:01

Re: nature d'une série

Message par mt2sr » 23 décembre 2020, 10:17

merci pour l'aide

Répondre